LogRel.DeclarativeInstance: proof that declarative typing is an instance of generic typing.
From Coq Require Import CRelationClasses.
From LogRel.AutoSubst Require Import core unscoped Ast Extra.
From LogRel Require Import Utils BasicAst Notations Context NormalForms UntypedReduction Weakening GenericTyping DeclarativeTyping.
Import DeclarativeTypingData.
From LogRel.AutoSubst Require Import core unscoped Ast Extra.
From LogRel Require Import Utils BasicAst Notations Context NormalForms UntypedReduction Weakening GenericTyping DeclarativeTyping.
Import DeclarativeTypingData.
Lemma shift_up_ren {Γ Δ t} (ρ : Δ ≤ Γ) : t⟨ρ⟩⟨↑⟩ = t⟨↑ >> up_ren ρ⟩.
Proof. now asimpl. Qed.
Section TypingWk.
Let PCon (Γ : context) := True.
Let PTy (Γ : context) (A : term) := forall Δ (ρ : Δ ≤ Γ), [|- Δ ] -> [Δ |- A⟨ρ⟩].
Let PTm (Γ : context) (A t : term) := forall Δ (ρ : Δ ≤ Γ), [|- Δ ] ->
[Δ |- t⟨ρ⟩ : A⟨ρ⟩].
Let PTyEq (Γ : context) (A B : term) := forall Δ (ρ : Δ ≤ Γ), [|- Δ ] ->
[Δ |- A⟨ρ⟩ ≅ B⟨ρ⟩].
Let PTmEq (Γ : context) (A t u : term) := forall Δ (ρ : Δ ≤ Γ), [|- Δ ] ->
[Δ |- t⟨ρ⟩ ≅ u⟨ρ⟩ : A⟨ρ⟩].
Theorem typing_wk : WfDeclInductionConcl PCon PTy PTm PTyEq PTmEq.
Proof.
subst PCon PTy PTm PTyEq PTmEq.
apply WfDeclInduction.
- trivial.
- trivial.
- intros ? ? IH.
now econstructor.
- intros Γ A B HA IHA HB IHB Δ ρ HΔ.
econstructor ; fold ren_term.
1: now eapply IHA.
eapply IHB with (ρ := wk_up _ ρ).
now constructor.
- intros; now constructor.
- intros; now constructor.
- intros ?????? ih ** ; rewrite <- wk_sig.
constructor; eauto.
eapply ih; constructor; eauto.
- intros * _ IHA _ IHx _ IHy **; rewrite <- wk_Id.
constructor; eauto.
- intros * _ IHA ? * ?.
econstructor.
now eapply IHA.
- intros * _ IHΓ Hnth ? * ?.
eapply typing_meta_conv.
1: econstructor ; tea.
1: eapply in_ctx_wk ; tea.
reflexivity.
- intros * _ IHA _ IHB ? ρ ?.
cbn.
econstructor.
1: now eapply IHA.
eapply IHB with (ρ := wk_up _ ρ).
econstructor ; tea.
econstructor.
now eapply IHA.
- intros * _ IHA _ IHt ? ρ ?.
econstructor.
1: now eapply IHA.
eapply IHt with (ρ := wk_up _ ρ).
econstructor ; tea.
now eapply IHA.
- intros * _ IHf _ IHu ? ρ ?.
cbn.
red in IHf.
cbn in IHf.
eapply typing_meta_conv.
1: econstructor.
1: now eapply IHf.
1: now eapply IHu.
now asimpl.
- intros; now constructor.
- intros; now constructor.
- intros; cbn; econstructor; eauto.
- intros * ? ihP ? ihhz ? ihhs ? ihn **; cbn.
erewrite subst_ren_wk_up; eapply wfTermNatElim.
* eapply ihP; econstructor; tea; now econstructor.
* eapply typing_meta_conv.
1: now eapply ihhz.
now erewrite subst_ren_wk_up.
* rewrite wk_elimSuccHypTy.
now eapply ihhs.
* now eapply ihn.
- intros; now constructor.
- intros * ? ihP ? ihe **; cbn.
erewrite subst_ren_wk_up; eapply wfTermEmptyElim.
* eapply ihP; econstructor; tea; now econstructor.
* now eapply ihe.
- intros ???? ih1 ? ih2 ** ; rewrite <- wk_sig; cbn.
constructor.
1: now eapply ih1.
eapply ih2 ; constructor; eauto.
now constructor.
- intros ?????? ihA ? ihB ? iha ? ihb **.
rewrite <- wk_sig; rewrite <- wk_pair.
constructor; eauto.
1: eapply ihB; constructor; eauto.
rewrite <- subst_ren_wk_up.
now eapply ihb.
- intros; cbn; econstructor; eauto.
- intros ????? ih **.
unshelve erewrite subst_ren_wk_up; tea.
econstructor; now eapply ih.
- intros * _ IHA _ IHx _ IHy **; rewrite <- wk_Id.
constructor; eauto.
- intros * _ IHA _ IHx **; rewrite <- wk_Id, <- wk_refl.
constructor; eauto.
- intros * _ IHA _ IHx _ IHP _ IHhr _ IHy _ IHe **.
rewrite <- wk_idElim.
erewrite subst_ren_wk_up2.
assert [|- Δ ,, A⟨ρ⟩] by (constructor; tea; eauto).
constructor; eauto.
+ rewrite 2!(wk_up_wk1 ρ).
eapply IHP; constructor; tea.
rewrite <- wk_Id; constructor.
* rewrite <- wk_up_wk1, wk_step_wk1; eauto.
* rewrite <- 2!wk_up_wk1, 2!wk_step_wk1; eauto.
* rewrite <- wk_up_wk1, wk1_ren_on; cbn; constructor; tea; constructor.
+ rewrite wk_refl, <- subst_ren_wk_up2; eauto.
- intros * _ IHt _ IHAB ? ρ ?.
econstructor.
1: now eapply IHt.
now eapply IHAB.
- intros Γ A A' B B' _ IHA _ IHAA' _ IHBB' ? ρ ?.
cbn.
econstructor.
+ now eapply IHA.
+ now eapply IHAA'.
+ eapply IHBB' with (ρ := wk_up _ ρ).
econstructor ; tea.
now eapply IHA.
- intros ?????????? ih **.
do 2 rewrite <- wk_sig; constructor; eauto.
eapply ih; constructor; eauto.
- intros * _ IHA _ IHx _ IHy **.
rewrite <- 2!wk_Id; constructor; eauto.
- intros * _ IHA ? ρ ?.
eapply TypeRefl.
now eapply IHA.
- intros * _ IH ? ρ ?.
econstructor.
now eapply IH.
- intros * _ IH ? ρ ?.
now econstructor ; eapply IH.
- intros * _ IHA _ IHB ? ρ ?.
eapply TypeTrans.
+ now eapply IHA.
+ now eapply IHB.
- intros Γ u t A B _ IHA _ IHt _ IHu ? ρ ?.
cbn.
eapply convtm_meta_conv.
1: econstructor.
+ now eapply IHA.
+ eapply IHt with (ρ := wk_up _ ρ).
econstructor ; tea.
now eapply IHA.
+ now eapply IHu.
+ now asimpl.
+ now asimpl.
- intros Γ A A' B B' _ IHA _ IHAA' _ IHBB' ? ρ ?.
cbn.
econstructor.
+ now eapply IHA.
+ now eapply IHAA'.
+ eapply IHBB' with (ρ := wk_up _ ρ).
pose (IHA _ ρ H).
econstructor; tea; now econstructor.
- intros Γ u u' f f' A B _ IHf _ IHu ? ρ ?.
cbn.
red in IHf.
cbn in IHf.
eapply convtm_meta_conv.
1: econstructor.
+ now eapply IHf.
+ now eapply IHu.
+ now asimpl.
+ now asimpl.
- intros * _ IHA _ IHA' _ IHA'' _ IHe ? ρ ?.
cbn; econstructor; try easy.
apply (IHe _ (wk_up _ ρ)).
now constructor.
- intros * _ IHf ? ρ ?.
cbn.
rewrite <- shift_upRen.
now apply TermFunEta, IHf.
- intros * ? ih **; cbn; constructor; now apply ih.
- intros * ? ihP ? ihhz ? ihhs ? ihn **; cbn.
erewrite subst_ren_wk_up.
eapply TermNatElimCong.
* eapply ihP; constructor; tea; now constructor.
* eapply convtm_meta_conv.
1: now eapply ihhz.
2: reflexivity.
now erewrite subst_ren_wk_up.
* rewrite wk_elimSuccHypTy.
now eapply ihhs.
* now eapply ihn.
- intros * ? ihP ? ihhz ? ihhs **.
erewrite subst_ren_wk_up.
eapply TermNatElimZero; fold ren_term.
* eapply ihP; constructor; tea; now constructor.
* eapply typing_meta_conv.
1: now eapply ihhz.
now erewrite subst_ren_wk_up.
* rewrite wk_elimSuccHypTy.
now eapply ihhs.
- intros * ? ihP ? ihhz ? ihhs ? ihn **.
erewrite subst_ren_wk_up.
eapply TermNatElimSucc; fold ren_term.
* eapply ihP; constructor; tea; now constructor.
* eapply typing_meta_conv.
1: now eapply ihhz.
now erewrite subst_ren_wk_up.
* rewrite wk_elimSuccHypTy.
now eapply ihhs.
* now eapply ihn.
- intros * ? ihP ? ihe **; cbn.
erewrite subst_ren_wk_up.
eapply TermEmptyElimCong.
* eapply ihP; constructor; tea; now constructor.
* now eapply ihe.
- intros * ????? ih ** ; do 2 rewrite <- wk_sig.
constructor; eauto.
eapply ih; constructor; tea; constructor; eauto.
- intros * ? ihA₀ ? ihA ? ihA' ? ihB ? ihB' ? iha ? ihb Δ ρ **.
rewrite <- wk_sig, <- !wk_pair.
assert [|-[de] Δ,, A⟨ρ⟩] by now constructor.
constructor; eauto.
rewrite <- subst_ren_wk_up; now apply ihb.
- intros * ? ihp Δ ρ **.
rewrite <- wk_sig, <- wk_pair.
constructor; rewrite wk_sig; eauto.
- intros * ? ih **. econstructor; now eapply ih.
- intros * ??? ihB ** ; rewrite <- wk_fst; rewrite <- wk_pair; constructor; eauto.
1: eapply ihB; constructor; eauto.
rewrite <- subst_ren_wk_up; eauto.
- intros * ? ih **.
unshelve erewrite subst_ren_wk_up; tea; cbn.
econstructor; now eapply ih.
- intros * ??? ihB **.
rewrite <- wk_snd; rewrite <- wk_pair.
unshelve erewrite subst_ren_wk_up.
2:constructor; eauto.
1: eapply ihB; constructor; eauto.
rewrite <- subst_ren_wk_up; eauto.
- intros * _ IHA _ IHx _ IHy **.
rewrite <- 2! wk_Id; constructor; eauto.
- intros * _ IHA _ IHx **.
rewrite <- 2!wk_refl, <- wk_Id; constructor; eauto.
- intros * _ IHA0 _ IHx0 _ IHA _ IHx _ IHP _ IHhr _ IHy _ IHe **.
rewrite <- 2!wk_idElim; erewrite subst_ren_wk_up2.
assert [|- Δ ,, A⟨ρ⟩] by (constructor; tea; eauto).
constructor; eauto.
+ rewrite 2!(wk_up_wk1 ρ).
eapply IHP; constructor; tea.
rewrite <- wk_Id; constructor.
* rewrite <- wk_up_wk1, wk_step_wk1; eauto.
* rewrite <- 2!wk_up_wk1, 2!wk_step_wk1; eauto.
* rewrite <- wk_up_wk1, wk1_ren_on; cbn; constructor; tea; constructor.
+ rewrite wk_refl, <- subst_ren_wk_up2; eauto.
- intros * _ IHA _ IHx _ IHP _ IHhr _ IHy _ IHA' _ IHz _ IHAA' _ IHxy _ IHxz **.
rewrite <- wk_idElim; erewrite subst_ren_wk_up2.
assert [|- Δ ,, A⟨ρ⟩] by (constructor; tea; eauto).
constructor; eauto.
+ rewrite 2!(wk_up_wk1 ρ).
eapply IHP; constructor; tea.
rewrite <- wk_Id; constructor.
* rewrite <- wk_up_wk1, wk_step_wk1; eauto.
* rewrite <- 2!wk_up_wk1, 2!wk_step_wk1; eauto.
* rewrite <- wk_up_wk1, wk1_ren_on; cbn; constructor; tea; constructor.
+ rewrite wk_refl, <- subst_ren_wk_up2; eauto.
- intros * _ IHt ? ρ ?.
now econstructor.
- intros * _ IHt _ IHA ? ρ ?.
now econstructor.
- intros * _ IHt ? ρ ?.
now econstructor.
- intros * _ IHt _ IHt' ? ρ ?.
now econstructor.
Qed.
End TypingWk.
A first set of boundary conditions
Section Boundaries.
Import DeclarativeTypingData.
Definition boundary_ctx_ctx {Γ A} : [|- Γ,, A] -> [|- Γ].
Proof.
now inversion 1.
Qed.
Definition boundary_ctx_tip {Γ A} : [|- Γ,, A] -> [Γ |- A].
Proof.
now inversion 1.
Qed.
Definition boundary_tm_ctx {Γ} {t A} :
[ Γ |- t : A ] ->
[ |- Γ ].
Proof.
induction 1 ; now eauto using boundary_ctx_ctx.
Qed.
Definition boundary_ty_ctx {Γ} {A} :
[ Γ |- A ] ->
[ |- Γ ].
Proof.
induction 1; now eauto using boundary_tm_ctx.
Qed.
Definition boundary_tm_conv_ctx {Γ} {t u A} :
[ Γ |- t ≅ u : A ] ->
[ |- Γ ].
Proof.
induction 1 ; now eauto using boundary_tm_ctx, boundary_ty_ctx.
Qed.
Definition boundary_ty_conv_ctx {Γ} {A B} :
[ Γ |- A ≅ B ] ->
[ |- Γ ].
Proof.
induction 1 ; now eauto using boundary_ty_ctx, boundary_tm_conv_ctx.
Qed.
Definition boundary_red_l {Γ t u K} :
[ Γ |- t ⤳* u ∈ K] ->
match K with istype => [ Γ |- t ] | isterm A => [ Γ |- t : A ] end.
Proof.
destruct 1; assumption.
Qed.
Definition boundary_red_tm_l {Γ t u A} :
[ Γ |- t ⤳* u : A] ->
[ Γ |- t : A ].
Proof.
apply @boundary_red_l with (K := isterm A).
Qed.
Definition boundary_red_ty_l {Γ A B} :
[ Γ |- A ⤳* B ] ->
[ Γ |- A ].
Proof.
apply @boundary_red_l with (K := istype).
Qed.
End Boundaries.
#[export] Hint Resolve
boundary_ctx_ctx boundary_ctx_tip boundary_tm_ctx
boundary_ty_ctx boundary_tm_conv_ctx boundary_ty_conv_ctx
boundary_red_tm_l
boundary_red_ty_l : boundary.
Definition RedConvC {Γ} {t u : term} {K} :
[Γ |- t ⤳* u ∈ K] ->
match K with istype => [Γ |- t ≅ u] | isterm A => [Γ |- t ≅ u : A] end.
Proof.
apply reddecl_conv.
Qed.
Definition RedConvTeC {Γ} {t u A : term} :
[Γ |- t ⤳* u : A] ->
[Γ |- t ≅ u : A].
Proof.
apply @RedConvC with (K := isterm A).
Qed.
Definition RedConvTyC {Γ} {A B : term} :
[Γ |- A ⤳* B] ->
[Γ |- A ≅ B].
Proof.
apply @RedConvC with (K := istype).
Qed.
Lemma redtmdecl_wk {Γ Δ t u A} (ρ : Δ ≤ Γ) :
[|- Δ ] -> [Γ |- t ⤳* u : A] -> [Δ |- t⟨ρ⟩ ⤳* u⟨ρ⟩ : A⟨ρ⟩].
Proof.
intros * ? []; split.
- now apply typing_wk.
- now apply credalg_wk.
- now apply typing_wk.
Qed.
Lemma redtydecl_wk {Γ Δ A B} (ρ : Δ ≤ Γ) :
[|- Δ ] -> [Γ |- A ⤳* B] -> [Δ |- A⟨ρ⟩ ⤳* B⟨ρ⟩].
Proof.
intros * ? []; split.
- now apply typing_wk.
- now apply credalg_wk.
- now apply typing_wk.
Qed.
Lemma redtmdecl_app Γ A B f f' t :
[ Γ |- f ⤳* f' : tProd A B ] ->
[ Γ |- t : A ] ->
[ Γ |- tApp f t ⤳* tApp f' t : B[t..] ].
Proof.
intros [] ?; split.
+ now econstructor.
+ now apply redalg_app.
+ econstructor; [tea|now apply TermRefl].
Qed.
Lemma redtmdecl_conv Γ t u A A' :
[Γ |- t ⤳* u : A] ->
[Γ |- A ≅ A'] ->
[Γ |- t ⤳* u : A'].
Proof.
intros [] ?; split.
+ now econstructor.
+ assumption.
+ now econstructor.
Qed.
Lemma redtydecl_term Γ A B :
[ Γ |- A ⤳* B : U] -> [Γ |- A ⤳* B ].
Proof.
intros []; split.
+ now constructor.
+ assumption.
+ now constructor.
Qed.
#[export] Instance RedTermTrans Γ A : Transitive (red_tm Γ A).
Proof.
intros t u r [] []; split.
+ assumption.
+ now etransitivity.
+ now eapply TermTrans.
Qed.
#[export] Instance RedTypeTrans Γ : Transitive (red_ty Γ).
Proof.
intros t u r [] []; split.
+ assumption.
+ now etransitivity.
+ now eapply TypeTrans.
Qed.
Module DeclarativeTypingProperties.
Export DeclarativeTypingData.
#[export, refine] Instance WfCtxDeclProperties : WfContextProperties (ta := de) := {}.
Proof.
1-2: now constructor.
all: boundary.
Qed.
#[export, refine] Instance WfTypeDeclProperties : WfTypeProperties (ta := de) := {}.
Proof.
all: try now econstructor.
- intros.
now eapply typing_wk.
Qed.
#[export, refine] Instance TypingDeclProperties : TypingProperties (ta := de) := {}.
Proof.
all: try (intros; now econstructor).
- intros.
now eapply typing_wk.
- intros.
econstructor ; tea.
now apply TypeSym, RedConvTyC.
Qed.
#[export, refine] Instance ConvTypeDeclProperties : ConvTypeProperties (ta := de) := {}.
Proof.
- now econstructor.
- intros.
constructor ; red ; intros.
all: now econstructor.
- intros.
now apply typing_wk.
- intros.
eapply TypeTrans ; [eapply TypeTrans | ..].
2: eassumption.
2: eapply TypeSym.
all: now eapply RedConvTyC.
- econstructor.
now econstructor.
- now econstructor.
- now econstructor.
- now econstructor.
Qed.
#[export, refine] Instance ConvTermDeclProperties : ConvTermProperties (ta := de) := {}.
Proof.
- intros.
constructor ; red ; intros.
all: now econstructor.
- intros.
now econstructor.
- intros.
now eapply typing_wk.
- intros.
econstructor; [|tea].
eapply TermTrans ; [eapply TermTrans |..].
2: eassumption.
2: eapply TermSym.
all: now eapply RedConvTeC.
- intros * ? H; apply H.
- intros.
now econstructor.
- intros.
now econstructor.
- intros.
eapply TermTrans; [|now eapply TermFunEta].
eapply TermTrans; [now eapply TermSym, TermFunEta|].
constructor; tea.
all: now econstructor.
- now do 2 econstructor.
- now do 2 econstructor.
- now econstructor.
- intros.
eapply TermTrans; [|now constructor].
eapply TermTrans; [eapply TermSym; now constructor|].
constructor; tea; now apply TypeRefl.
- now do 2 econstructor.
- now econstructor.
- now econstructor.
Qed.
#[export, refine] Instance ConvNeuDeclProperties : ConvNeuProperties (ta := de) := {}.
Proof.
- split; red.
+ intros ?? []; split; tea; now econstructor.
+ intros ??? [] []; split; tea; now econstructor.
- intros ????? [] ?; split; tea; now econstructor.
- intros ??????? []; split.
+ now eapply whne_ren.
+ now eapply whne_ren.
+ now eapply typing_wk.
- now intros ???? [].
- intros ???; split; now econstructor.
- intros ??????? [] ?; split; now econstructor.
- intros ???????????? []; split; now econstructor.
- intros ?????? []; split; now econstructor.
- intros ????? []; split; now econstructor.
- intros ????? []; split; now econstructor.
- intros * ??????? []; split; now econstructor.
Qed.
#[export, refine] Instance RedTermDeclProperties : RedTermProperties (ta := de) := {}.
Proof.
- intros.
now eapply redtmdecl_wk.
- intros; now eapply redtmdecl_red.
- intros. now eapply boundary_red_tm_l.
- intros; split.
+ repeat (econstructor; tea).
+ eapply redalg_one_step; constructor.
+ now constructor.
- intros; split.
+ repeat (econstructor; tea).
now eapply boundary_tm_ctx.
+ eapply redalg_one_step; constructor.
+ now constructor.
- intros; split.
+ repeat (econstructor; tea).
+ eapply redalg_one_step; constructor.
+ now constructor.
- intros; now eapply redtmdecl_app.
- intros * ??? []; split.
+ repeat (constructor; tea).
+ now eapply redalg_natElim.
+ constructor; first [eassumption|now apply TermRefl|now apply TypeRefl].
- intros * ? []; split.
+ repeat (constructor; tea).
+ now eapply redalg_natEmpty.
+ constructor; first [eassumption|now apply TermRefl|now apply TypeRefl].
- intros; split; refold.
+ econstructor; now constructor.
+ eapply redalg_one_step; constructor.
+ now constructor.
- intros * [? r ?]; split; refold.
+ now econstructor.
+ now apply redalg_fst.
+ now econstructor.
- intros; split; refold.
+ econstructor; now constructor.
+ eapply redalg_one_step; constructor.
+ now constructor.
- intros * [? r ?]; split; refold.
+ now econstructor.
+ now apply redalg_snd.
+ now econstructor.
- intros **; split; refold.
+ econstructor; tea.
econstructor.
1: econstructor; tea; now econstructor.
econstructor.
1: now econstructor.
1,2: econstructor; tea.
1: now econstructor.
eapply TermTrans; tea; now econstructor.
+ eapply redalg_one_step; constructor.
+ now econstructor.
- intros * ????? []; split; refold.
+ now econstructor.
+ now eapply redalg_idElim.
+ econstructor; tea; now (eapply TypeRefl + eapply TermRefl).
- intros; now eapply redtmdecl_conv.
- intros; split.
+ assumption.
+ reflexivity.
+ now econstructor.
Qed.
#[export, refine] Instance RedTypeDeclProperties : RedTypeProperties (ta := de) := {}.
Proof.
- intros.
now eapply redtydecl_wk.
- intros; now eapply redtydecl_red.
- intros. now eapply boundary_red_ty_l.
- intros.
now eapply redtydecl_term.
- intros; split.
+ assumption.
+ reflexivity.
+ now constructor.
Qed.
#[export] Instance DeclarativeTypingProperties : GenericTypingProperties de _ _ _ _ _ _ _ _ _ _ := {}.
End DeclarativeTypingProperties.